жк днепропетровская 37

Энергоэффективность по расчету

Наряду с методикой перехода от более низкого к более высокому классу, проектировщики получили типовые решения по автоматизации с описанием структурированного списка приборов, средств и функций управления.

Автоматизация как метод снижения энергозатрат

Потребление электроэнергии коммерческими и жилыми зданиями постоянно увеличивается, опережая уровень использования ресурса на транспорте и в промышленности. Основная часть расходуемой сегодня в Европе энергии (41%) приходится на эксплуатируемые здания. Из этого объема 85% тратится на обогрев или охлаждение помещений, а 15% – на электроснабжение и освещение.

Системы автоматизации оказывают значительное влияние на энергоэффективность этих зданий. Автоматизированное управление отоплением, вентиляцией и охлаждением, подачей горячей воды, освещением значительно повышает эффективность их эксплуатации и снижает энергозатраты здания в целом.

– По данным одного из европейских агентств, затраты на возведение условного усредненного здания составляют 20%, на эксплуатацию – 80% от общего объема совокупных расходов за 50 лет, рассказывает Владимир Максименко, председатель комитета НП «АВОК» «Интеллектуальные здания и информационно-управляющие системы», генеральный директор ВACS Center Russia. – Как правило, инженерные системы достигают примерно 30%в объеме капитальных затрат, на системы автоматизации приходится 10% стоимости инженерии. Но израсходовав всего 3–4% от общего объема сметных затрат на правильно организованную систему управления зданием, можно сэкономить средства, которые соответствуют или превосходят стоимость строительства объекта.

Табл. 1. Типовая категоризация по потенциалам энергосбережения в зданиях

Табл. 2. Классы энергоэффективности по стандарту EN 15232

Источники энергии

Подобная экономия достигается за счет трех основных принципов использования энергоресурсов. Прежде всего, это потребление энергии только там, где это необходимо (самый распространенный случай – управление светом по датчикам присутствия и освещенности). Во-вторых, использование ресурса только в требуемом объеме без потерь для комфорта и безопасности (например, регулирование воздухообмена в помещениях с изменяющимся количеством людей, погодозависимое управление АИТП и т. п.). В-третьих, это эксплуатация инженерных систем с максимальной эффективностью.

Последнее означает, в частности, взаимоисключающее влияние источников тепла и охлаждения, регулирование подачи тепло- или хладоносителя, автоматическое управление энергоснабжением за счет оптимизации технологических процессов на производстве и т. п.

Возможно ли с точностью определить энергосберегающий эффект в зависимости от степени автоматизации зданий и как учесть влияние автоматизированных систем на энергоэффективность?

Энергоэффективность от А до D

Ответ на этот вопрос дает европейский стандарт EN 15232 «Влияние автоматизации на энергоэффективность зданий», который является одним из стандартов Европейского комитета по стандартизации – CEN (Comité Européen de Normalisation). Комитет создан в рамках спонсированного Евросоюзом проекта стандартизации с целью поддержки исполнения Директивы по энергоэффективности зданий (EPBD) и повышению энергосбережения в странах ЕС.

Стандарт EN 15232 задает методику оценки влияния на энергоэффективность функций систем автоматизации зданий (САЗ) и способов управления инженерными системами (УИС): отоплением, ГВС, охлаждением, вентиляцией и кондиционированием, освещением и жалюзи, а также методику определения минимальных требований к таким системам для зданий различной сложности. Стандарт позволяет количественно и качественно оценить преимущества систем автоматизации зданий и основан на имитационном моделировании управления инженерными системами.

Национальный стандарт РФ – ГОСТ Р 54862-2011 разработан с учетом основных нормативных положений европейского стандарта EN 15232 (версия 2007 года).

Табл. 3. Список функций и назначений по классам энергоэффективности стандарта EN 15232

Стандартом определены четыре класса энергоэффективности систем автоматизации.

– Чем выше уровень автоматизации, тем больше возможность извлечь потенциал экономии энергии в инженерных системах,поясняет руководитель направления «Энергоэффективность зданий» ООО «Сименс» Юрий Тарасенко. – Компания принимала активное участие в разработке европейского стандарта EN 15232, кроме того, в штаб-квартире были разработаны подробные руководства по применению на практике стандарта EN 15232 версий 2007 и 2012 годов. – Чем рациональнее работают инженерные системы, тем выше энергоэффективность здания в целом. Поэтому система автоматизации может и должна решать задачу экономии энергии, но не за счет комфорта.

Возьмем для примера простую задачу поддержания температуры воздуха в помещениях. Если система не автоматизирована или имеет только центральное регулирование, то во все помещения подается воздух одной температуры, и здание относится к низкоэффективному классу D.

Чтобы перейти в класс С, надо ввести индивидуальное комнатное регулирование с помощью термостатов или контроллеров. Класс В подразумевает наличие коммуникаций между контроллерами и центральной станцией – именно они позволяют извлечь дополнительную экономию в инженерных системах.

Для класса А необходимо, чтобы индивидуальное комнатное регулирование было интегрировано с учетом потребности (по присутствию человека в помещении, качеству воздуха и так далее). Принцип прост: человек в помещении – оптимальный комфорт, нет человека – резкое снижение комфортных условий.

Из класса в класс

Предусмотреть энергосберегающий эффект при использовании положений стандартов можно уже на стадии проектирования, если ориентироваться на коэффициенты энергосбережения в зависимости от типа здания и класса энергоэффективности его систем. Для класса С эти показатели приняты за единицу, то есть данный класс является базовым, а его показатели могут быть установлены местным законодательством. Внедрение автоматизации классов В или А приводит к снижению коэффициентов, а следовательно, к повышению энергоэффективности здания.

Если модернизировать систему автоматизации и перейти из класса С в класс В, то в соответствии с коэффициентом 0,8 можно сэкономить 20% тепловой энергии. Если провести модернизацию таким образом, чтобы перейти в класс А, то экономия уже составит 30% тепловой энергии.

Такие же коэффициенты разработаны и указаны в стандарте для электроэнергии. Методом имитационного моделирования получены коэффициенты по тепловой и электроэнергии для различных типов зданий. С их помощью можно предварительно и приблизительно рассчитать сокращение энергозатрат при автоматизации инженерных систем по тому или другому уровню энергоэффективности. Есть также специальные программы, которые позволяют на этапе проектирования подсчитывать потенциал экономии и моделировать системы автоматизации с позиций энергоэффективности.

По словам Юрия Тарасенко, справедливость приведенных в стандарте коэффициентов подтверждена практическим опытом на многих объектах с участием «Сименс» как за рубежом, так и в России.

Например, в новом здании штаб-квартиры Sueddeutscher Verlag в Мюнхене достигнута высокая энергоэффективность работы систем отопления, вентиляции, кондиционирования воздуха и освещения с помощью средств и систем автоматизации. Оно было удостоено золотого сертификата LEED как первое в Германии «зеленое» офисное здание.

Офисное здание компании «Сименс» в Москве также получило золотой сертификат LEED за экологичность, энергоэффективность, безопасность и комфорт. Интеллектуальная система автоматизации управляет инженерными системами и осуществляет энергомониторинг потребления электричества, тепла и воды.

В подмосковном Сколково в сентябре 2012 г. введено в эксплуатацию первое здание – «Гиперкуб» с комплексной системой автоматизации «Сименс», охватывающей все инженерные службы, в том числе системы отопления, вентиляции, кондиционирования воздуха, освещения, распределения энергии и системы безопасности.

Табл. 4. Коэффициенты энергоэффективности САЗ для тепловой энергии

Все эти проекты относятся к офисным зданиям класса А и предусматривают интеграцию различных систем с индивидуальным регулированием. При этом пользователь затрачивает минимум усилий для управления системой, так как эти функции возложены на единый центр контроля, отвечающий за здание в целом.

Одним из примеров внедрения подобной системы в жилом строительстве является проект «Кристалл Хаус», реализованный при участии компании Schneider Electric.

– Перед компанией стояла задача объединить все системы, благодаря которым работает здание: распределение энергии, IT, управление освещением, отопительную систему, систему кондиционирования и вентиляции, систему безопасности и др. в единую управляемую интеллектуальную архитектуру,рассказывает Андрей Крылов, менеджер по развитию бизнеса управления «Здания и Экобизнес» Schneider Electric в России. – Эта задача была решена за счет внедрения автоматизированной системы управления и диспетчеризации здания BMS.

Благодаря датчикам для измерения освещенности, температур, давления, исполнительным устройствам для регулирования подачи воды, воздуха, тепло- и хладоносителя, приборам учета, а также разветвленной сети контроллеров, BMS управляет и осуществляет мониторинг всего инженерного и технологического оборудования, включая систему многоступенчатой системы очистки воды, а также питьевого водопровода с доочисткой и обеззараживанием.

Одно из самых важных достоинств системы для жильцов заключается в возможности поквартирного учета всех энергоресурсов – тепла на отопление, подогрев пола и вентиляцию, горячей, холодной и питьевой воды, а также электроэнергии – с подготовкой счетов или отчетов для последующего анализа с целью выполнения функций экономии.

Интеллектуальная система управления домом – это не только энергосберегающее технологическое оборудование, способное грамотно функционировать, создавая комфорт жильцам при минимуме затрат. Значительным преимуществом BMS в этом случае стала функция прозрачности потребления и стоимости ресурсов. Поскольку в каждой квартире установлены приборы учета каждого из потребляемых энергоресурсов, жилец получает полную картину того, где, как и когда произошел перерасход тепла, электричества и воды.

Таким образом, не только у заказчиков, но и у пользователей появляется стимул для рачительного использования ресурсов и экономии энергии.

Максимум возможностей – минимум энергозатрат

При всех преимуществах автоматизированных зданий, доступности энергосберегающего оборудования и средств автоматизации количество таких проектов в российском строительстве крайне мало по сравнению с европейскими странами.

– При выборе уровня автоматизации как метода снижения энергопотребления решение принимают заказчики, которые во многих случаях отдают предпочтение более дешевым решениям в ущерб энергоэффективности,говорит Юрий Тарасенко. – Хотя в последнее время заметно повышение их интереса к подобным решениям и понимание целесообразности применения энергоэффективной автоматизации. В соответствии с выбором заказчика составляется техническое задание разработчика.

Однако далеко не все проектные организации в нашей стране руководствуются рассматриваемыми стандартами. В конце концов, стандарт не предписывает проектирование систем автоматизации по тому или иному классу энергоэффективности, а лишь задает методику и демонстрирует возможности энергосбережения при переходе к более высокому классу.

Что касается окупаемости проектов, выполненных с использованием автоматизации инженерных систем зданий, то на нее влияет не только уровень оснащенности приборами и системами автоматизации, но и активизация всех специальных заложенных в них программных функций энергосбережения.

– Рынок автоматизированных зданий класса А в России пока простаивает, несмотря на энергоэффективность подобных проектов. При их рассмотрении чаще всего основным стимулом для инвестора становится снижение нагрузки на внешнюю электросеть,констатирует, в свою очередь, Виталий Федоров, генеральный директор Группы компаний INTELVISION.

Компания является трехкратным победителем Национальной премии в области автоматизации зданий Hi-Tech Building Awards в 2010–2012 годы и девелопером первого интеллектуального здания в Санкт-Петербурге – офисно-делового центра «Альпийский».

Специально для этого небольшого по меркам бизнес-центров объекта в INTELVISION был разработан проект всей инженерной и информационной инфраструктуры, интегрированной в единую автоматизированную систему управления зданием SmartUnity BМS на базе оборудования Beckhoff с применением в рамках одного проекта беспрецедентного количества протоколов автоматизации, таких как KNX, LON, DALI, Modbus, Ethernet.

В здании использованы энергосберегающие решения для всех без исключения инженерных систем, что само по себе принесло ощутимый эффект. В частности, энергосберегающие светильники с функцией димирования, которые обеспечили уменьшение энергозатраты на освещение с 30 Вт/ кв. м до 11 Вт/кв.м, система вентиляции с частотным регулированием и роторным утилизатором, что позволило снизить потребление тепловой энергии в 7 раз – с выделенных по ТУ 0,3 до 0,04 Гкал, эффективная сантехника с автоматическим регулированием расхода воды и температуры, что сократило затраты на 25%.

Уникальная система автоматизации климата отвечает за регулирование расхода воздуха на основании показаний датчиков качества воздуха, за управление термоэлектрическими клапанами подачи воды на эжекционные балки и подачи тепла на радиаторах в зависимости от установки климат-контроля в каждом помещении. Предусмотрены отключение системы ОВК при открытых окнах, управление солнцезащитными жалюзи с учетом внешней температуры и уровня освещенности по сторонам света, наличия людей в помещении и общей освещенности. Реализованы мониторинг, оптимизация и предикативное управление функциями системы ОВК с учетом текущего энергопотребления.

Всего в помещениях насчитывается более 1500 точек управления и мониторинга, информация с которых обрабатывается в реальном времени котроллерами и вносится в базу данных системы BMS. Кроме того, в здании установлено более 40 приборов учета электроэнергии, и система учета энергоресурсов позволяет автоматически получать отчеты по потреблению электроэнергии для каждого арендатора в отдельности и потреблению воды для всего здания в целом, а также анализировать полученные данные и делать прогноз на будущие периоды.

Интеллектуальное управление нагрузками перераспределяет электроэнергию между основными потребителями таким образом, чтобы избежать перегрузки сети и влиять на расход электроэнергии в здании.

По данным компании, экономия на эксплуатационные расходы по системе электроосвещения составила около 60%, по системе отопления – до 40%, по холодоснажению – до 50%. Энергоэффективные решения в сочетании с беспрецедентным количеством технологий автоматизации позволили снизить совокупный объем вложений в проект более чем на 19 млн рублей, а эксплуатационные затраты – более чем на 2,5 млн рублей в год.

Татьяна Рейтер

Похожие сообщения

X